
Containerization 
and Docker

 Supplement to the Video 
Presentation 

MRIGlobal 1



For complex development environments, 
getting code to work on multiple computers 
can be a challenge.

While it is possible to share development 
environments without containerization, 
there is no guarantee it will work across any 
OS – in fact, it almost never will.

The Problem

2MRIGlobal



Containerization can be used to streamline the process of 
developing and sharing complicated applications.

Using Docker is an effective way to share an app you’ve 
built on your own computer – especially if you want to 
actively maintain it for all users without them needing to 
worry about it.

Containerization

3MRIGlobal



Docker is a lightweight containerization software. 

It creates isolated file systems, or containers, that your services run inside of.

Containers use a construction blueprint, called an “image”. Images are 
constructed in stepwise fashion by users.

Containers can be networked together.

What is Docker?

4

https://www.docker.com/

MRIGlobal



Docker containers are meant to be built and destroyed quickly, not sustained 
indefinitely. This reduces the required resources and improves security.

Docker is not virtualization software. Containers are not VMs and do not have 
their own OS – instead, they depend on the host’s kernel. This means that 
there is a limit to Docker’s flexibility – more on this at the end of the 
presentation.

What is Docker? (2)

5

https://www.docker.com/

MRIGlobal



The .dockerfile is the recipe for an 
image. The main components of 
most .dockerfiles are the same:

1. Pull a base image from an 
online repository.

2. Copy local files (your 
code) into the new 
container.

3. Execute commands on 
files in the container.

Using Docker: Creating .dockerfiles

6MRIGlobal



Base images are curated, lightweight versions of a 
normal OS.
There are base images available for every commonly 
used OS on public repositories.

.dockerfile Base Images

7

Note
Advanced users can create their own base 
images and “go distroless” – not something 
to worry about right now.

MRIGlobal



There are many we won’t cover – these commands are 
the ones we’ll go over in the video example.

1. FROM – Used to specify a base image. When executing a 
.dockerfile, Docker assumes that you are pulling from its 
own repo. If you pull from somewhere else, you’ll need to 
specify – but that’s beyond the scope of this tutorial.

.dockerfile Commands

8MRIGlobal



2. COPY & WORKDIR – Used to make content from 
your local filesystem available inside the container. 

Whatever folder you copy into is relative to that container - it is 
isolated from everything else, and therefore can have any name 
you’d like. This is relevant when considering Docker volumes (stay 
tuned).
The .dockerignore text file (just like a .gitignore file) prevents 
unwanted files in the container. Very useful when the .dockerfile is 
in the parent folder.

.dockerfile Commands (Cont.)

9MRIGlobal



3. RUN – Used to issue many types of commands to 
intermediate containers – installing packages like 
curl, for example. 

There are many “best practice” rules concerning security and 
deployment speed. Many are outside the scope of this tutorial, but 
a general rule: pipe together multiple related commands where 
possible to reduce the number of intermediate stages needed by 
your container.

.dockerfile Commands (Cont.)

10MRIGlobal



4. ENV – Changes default environmental variable 
values within the container. RUN commands can do 
this too, but variables set in an intermediate stage 
do not persist in the final container.

ENV variables can take whatever value you’d like and be named 
whatever you’d like.

.dockerfile Commands (Cont.)

11MRIGlobal



5. EXPOSE – This simple command informs the 
container which port to get all its required 
information from during runtime. While running a 
service inside of a container on your local 
machine, you’ll often navigate to the localhost port 
number in a browser.
For example: EXPOSE 8080  localhost:8080

.dockerfile Commands (Cont.)

12MRIGlobal



6. CMD & ENTRYPOINT – both are used to 
issue command(s) to a freshly created, 
final-stage container. 
Using CMD is akin to writing something at the 
command line – but only the final CMD in the 
.dockerfile is executed, so use only one. 
Alternatively, ENTRYPOINT points to another 
file that was copied into the container – all 
commands in that file are executed.

.dockerfile Commands (Cont.)

13MRIGlobal

Tip
An ENTRYPOINT 
command can be 
used to build and 
activate a curated 
conda environment!



7. VOLUME – perhaps the trickiest Docker command. Used to 
“mount” a file-system to a container. When files are 
“mounted”, the container may see, use, or even delete 
them. 
In addition, changes made to container-specific files persist even after the container is destroyed – 
when it is rebuilt, everything will be as it was*.

You can even destroy and rebuild the container’s image without making changes to the volume. This 
is possible because of the Docker Daemon’s root privilege.

*The name of the volume matters! To persist data, one of your volumes should have the same name 
as the WORKDIR – the container’s version of changes made to those files (for instance, a .db file) 
will live with the Daemon while the container is down.

.dockerfile Commands (Cont.)

14MRIGlobal



If your application requires more than one 
service, it is best to network multiple containers 
together – each with their own .dockerfile – using 
Docker-Compose.

Don’t worry – these don’t look too different than a 
regular .dockerfile, with many of the same 
components.

In general, each container should run just one 
service and run it well.

For example: a website where one container runs 
the web interface, and another container is 
responsible for the underlying database.

Increasing Complexity with Docker-Compose

15MRIGlobal



Cross-Platform Compatibility:
Remember that intro? Well, Docker can help to solve that problem … sort of.

In general, Docker is not cross-platform compatible – not without special tinkering and 
legwork. It can be made to work in many cases!

Docker is not a VM – it relies on the hosting filesystem’s kernel.

It can work when the host is “compatible enough” with the development environment – for 
instance, a Docker service developed in an older Ubuntu environment may work in other 
Debian-based Linux environments.

“Distro-less” base environments can be made to ignore this rule. Not every service can work 
without a distro, though.

These are ultra-complicated use-cases. It’s recommended to steer clear of this initially – intend 
for your containers to run on the same OS they were developed on.

The Major Limitation of Docker

16MRIGlobal



Docker has slowly been buying many of its 
competitors and incorporating them into its 
own software, possibly in preparation for 
incorporating a new paywall. They still 
exist as open-source projects, but each 
individually isn’t a feature-complete 
alternative. 

Some of the competitors are: runC, 
containerd, and even Compose!

Alternatives to Docker

17



HyperV: Windows only, but each container has its own kernel. Improved 
security and reliability, but slower and with a bigger footprint.
rkt: Features cross-platform compatibility, high security (no daemon, no root 
access), and can use both Docker containers and Kubernetes. However, not 
being actively supported by parent company.
LXC: Linux-only, with emphasis on multi-service containers. Not as portable as 
Docker containers, more complexity can be packed into any given container.
Good-old-fashioned VMs.

Alternatives to Docker (Cont.)

18MRIGlobal



Kubernetes-based (K8s) containerization: Not containerization software itself, 
but it “orchestrates” storage, load-balancing, and software rollouts between 
many compute resources. The K8 folks say: “if it runs in a container, it should 
run great in Kubernetes.”

This is more-so an alternative to Docker Swarm, than Docker itself. In fact, 
Docker containers can run on K8s, too! Docker Swarm is well beyond the 

scope of this intro – if you get into deploying containers as a swarm on an 
HPC or shared-server down the line, make sure to check out K8, as well as 
other systems designed to run on K8s.

Special Mention: Ruckstack

Alternatives to Docker (Cont.)

19MRIGlobal



THANK YOU
Follow us and learn more 
about our work

Facebook.com/MRIGlobalResearch

Youtube.com/user/MRIExternalComm

Linkedin.com/company/mriglobal

twitter.com/MRIGlobal


